AbstractA generalized statistical linearization technique is developed for determining approximately the stochastic response of nonlinear dynamic systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant degrees of freedom can facilitate the formulation of the equations of motion in a less labor-intensive manner. Specifically, relying on the generalized matrix inverse theory and on the Moore-Penrose (M-P) matrix inverse, a family of optimal and response-dependent equivalent linear matrices is derived. This set of equations in conjunction with a generalized excitation-response relationship for linear systems leads to an iterative determination of the system response mean vector and covariance matrix. Further, it is proved ...
Read full abstract