Montane areas host high levels of diversity and endemism, and these features are tied to habitat stratification along an elevational gradient. As such, montane areas are often thought of as model systems in which sympatric speciation can occur. To test this idea, we selected Phoenicurus redstarts, an avian genus with an extensive distribution across Eurasia, as well as Northwest Africa; nine of the 14 species in the genus have distributions which include the Himalayas. We used sequences of the mtDNA ND2 and cytochrome-b genes and intron 9 of the Z chromosome specific ACO1 gene to reconstruct a phylogeny of the genus. The resulting trees were used to reconstruct a biogeographic history of Phoenicurus, and to date diversification events. We also analysed the relationship between node age and sympatry to determine the geographic mode of speciation in the genus. Our data suggest a very late Miocene, Himalayan origin for Phoenicurus. Diversification and colonization of other parts of Eurasia, as well as Northwest Africa, continued through the Pleistocene, with a rapid pulse of speciation in the late Pliocene. Allopatric speciation was the dominant mode of speciation in Phoenicurus, despite extensive distributional overlaps in the Himalayas where ecological conditions are amenable to speciation in sympatry. Our results, along with several other studies, suggest an emerging pattern where the Himalayas served as a source area for montane specialist avian lineages that subsequently colonized other Palaearctic regions.
Read full abstract