Identifying trends in hydrometeorological time series during extreme weather events and their interactions with large-scale atmospheric teleconnections is crucial for climate change research. This study evaluates 14 precipitation-based indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) across seven climatic zones of India using gridded daily rainfall data from the India Meteorological Department (IMD) for 120 years (1902–2021) utilised. Trend analysis was carried out using the Mann-Kendall (MK) test, Theil-slope Sen's estimator, Innovative Trend Analysis (ITA), and other statistical tools. Change point detection is established using the Pettitte test and Cumulative Sum algorithm. The relationships between large-scale atmospheric teleconnections and ETCCDI indices are also found, and Multiple Linear Regression (MLR) models are developed between them.The results show significant increasing trends in extreme rainfall indices in India's Ladakh region, located in the arid desert-cold climatic zone. The annual, Southwest Monsoon (SW-Monsoon), Northeast Monsoon (NE-Monsoon), and summer rainfall trends were positive, while winter rainfall had a negative trend across most climatic zones. Significant associations between large-scale atmospheric teleconnections, including Arctic Oscillation (AO), Pacific Decadal Oscillation (PDO), Global Temperature Anomaly (GTA), Southern Oscillation Index (SOI), SST of Niño 3.4 region, Oceanic Niño Index (ONI), and Dipole Mode Index (IOD) and ETCCDI indices were established across multiple climatic zones. Using MLR analysis, this study attempts to establish, for the first time, the relationship between teleconnections and ETCCDI indices across India. Extreme rainfall indices are influenced by climate change during the SW-Monsoon across most of the climatic zones of India. During the previous El Niño event (2014–2016), average annual rainfall decreased by 19.5%, SW-Monsoon rainfall decreased by 25.2%, and NE-Monsoon rainfall decreased by 64.1% in India. The findings may provide valuable insights into mitigation strategies to sustain the adverse effects of extreme weather conditions and enhance climate resilience.
Read full abstract