Plastics are omnipresent in our everyday life, and accumulation of post-consumer plastic waste in our environment represents a major societal challenge. Hence, methods for plastic waste recycling are in high demand for a future circular economy. Specifically, the degradation of post-consumer polymers towards value-added small molecules constitutes a sustainable strategy for a carbon circular economy. Despite of recent advances, chemical polymer degradation continues to be largely limited to chemical redox agents or low energy efficiency in photochemical processes. We herein report a powerful iron-catalyzed degradation of high molecular weight polystyrenes through electrochemistry to efficiently deliver monomeric benzoyl products. The robustness of the ferraelectrocatalysis was mirrored by the degradation of various real-life post-consumer plastics, also on gram scale. The cathodic half reaction was largely represented by the hydrogen evolution reaction (HER). The scalable electro-polymer degradation could be solely fueled by solar energy through a commercially available solar panel, indicating an outstanding potential for a decentralized green hydrogen economy.