Abstract

Lignin shows great potential for sustainable production of high-quality fuels and value-added chemicals. The development of efficient and highly stable multifunctional catalysts for the depolymerization of lignin into aromatic chemicals remains a great challenge. In this work, environmentally friendly NiFe2O4 spinel catalyst characterizing with rich oxygen vacancies and porous structures was constructed by introducing Ni to modulate the coordination environment of cations in Fe3O4. Under optimal conditions, the conversion of alkali lignin catalyzed by NiFe2O4 reached 91.0%, the yield of liquid product reached 83.6% and the yield of aromatic monomer products was 31.7%. Combined results from catalyst characterization, product analysis and density functional theory calculations showed that the Lewis acidic center of the catalyst was significantly improved by the introduction of Ni, which promoted the C-O bond breaking in lignin. The Ni-O-Fe structure facilitated the adsorption of lignin substrates and reaction intermediates, which resulted in the improved depolymerization efficiency of lignin. The present work provides valuable insights into the depolymerization of lignin by spinel catalysts, and offers ideas for the future design and development of binary or even ternary spinel catalysts for the depolymerization of lignin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.