α-Synuclein (α-Syn) aggregation/fibrillation is a leading cause of neuronal death and is one of the major pathogenic factors involved in the progression of Parkinson's' disease (PD). Against this backdrop, discovering new molecules as inhibitors or modulators of α-Syn aggregation/fibrillation is a subject of enormous research. In this study, we have shown modulation, disaggregation, and neuroprotective potential of aloin and emodin against α-Syn aggregation/fibrillation. Thioflavin T (ThT) fluorescence assay showed an increase in lag phase from (51.14 ± 2) h to (68.58 ± 2) h and (74.14 ± 3) h in the presence of aloin and emodin respectively. ANS binding assay represents a modulatory effect of these molecules on hydrophobicity which is crucial for aggregates/fibril formation. NMR spectroscopy and tyrosine quenching studies reveal the binding of aloin/emodin with monomeric α-Syn. TEM and DLS micrographs illustrate the attenuating effect of aloin/emodin against the development of large aggregates/fibrils. Our seeding experiments suggest aloin/emodin generate seeding incompetent oligomers that direct the off-pathway aggregation/fibrillation. Also, aloin/emodin capably reduces the fibrils-induced cytotoxicity and disassembles the preexisting amyloid fibrils. These findings provide deep insight into the modulatory mechanism of α-Syn aggregation/fibrillation in the presence of aloin and emodin, thereby suggesting their potential roles as promising therapeutic molecules against aggregation/fibrillation related disorders.