AbstractPhotopolymerization of MMA was carried out at 40°C in diluted systems by use of quinolinebromine (Q–Br2) charge‐transfer complex as the initiator and chloroform, carbon tetrachloride, chlorobenzene, dioxane, THF, acetone, benzene, toluene, quinoline, and pyridine as solvents. The results showed variable monomer exponents ranging from 1 to 3. For chloroform, carbon tetrachloride, and chlorobenzene, the monomer exponent observed was unity; for other solvents used, the value of the same exponent was much higher (between 2 and 3). Initiation of polymerization is considered to take place through radicals generated in the polymerization systems by the photodecomposition of (Q–Br2)–monomer complex (C) formed instantaneously in situ on addition of the Q–Br2 complex in monomer. The kinetic feature of high monomer exponent is considered to be due to higher order of stabilization of the initiating complex (C) in presence of the respective solvents. In the presence of the retarding solvents, very low or zero initiator exponents were also observed, depending on the nature and concentration of the solvents used. The deviation from the square‐root dependence of rate on initiator concentration becomes higher at high solvent and initiator concentrations in general. This novel deviation is explained on the basis of initiator termination, probably via degradative chain transfer involving the solvent‐modified initiating complexes and the propagating radicals.
Read full abstract