The purpose of this study was to document changes in aerodynamic and glottographic aspects of vocal function in patients with Parkinson disease who received two forms of high effort treatment. Previous reports (Ramig, Countryman, Thompson, & Horii, 1995) have documented increased sound pressure level (SPL) following treatment that trained phonation and respiration (Lee Silverman Voice Treatment: LSVT), but not for treatment that trained respiration only (R). In order to examine the mechanisms underlying these differences, measures of maximum flow declination rate (MFDR) and estimated subglottal pressure (Psub) were made before and after treatment. A measure of relative vocal fold adduction (EGGW) was made from the electroglottographic signal during sustained vowel phonation. Sound pressure level data from syllable repetition, sustained vowel phonation, reading, and monologue tasks were also analyzed to allow a more detailed understanding of treatment-related change in several contexts. Consistent with increases in SPL, significant increases in MFDR, estimated Psub, and EGGW were measured posttreatment in patients who received the LSVT. Similar changes were not observed following R treatment. These findings suggest that the combination of increased vocal fold adduction and subglottal pressure is a key in generating posttreatment increases in vocal intensity in idiopathic Parkinson disease (IPD).