The objectives of this study were, firstly, to compare a conventional (i.e., chlorinated alkaline) versus an alternative (chlorinated alkaline plus enzymatic) treatment effectivity for the elimination of biofilms from different L. monocytogenes strains (CECT 5672, CECT 935, S2-bac and EDG-e). Secondly, to evaluate the cross-contamination to chicken broth from non-treated and treated biofilms formed on stainless steel surfaces. Results showed that all L. monocytogenes strains were able to adhere and develop biofilms at approximately the same growth levels (≈5.82 log CFU/cm2). When non-treated biofilms were put into contact with the model food, obtained an average transference rate of potential global cross-contamination of 20.4%. Biofilms treated with the chlorinated alkaline detergent obtained transference rates similar to non-treated biofilms as a high number of residual cells (i.e., around 4 to 5 Log CFU/cm2) were present on the surface, except for EDG-e strain on which transference rate diminished to 0.45%, which was related to the protective matrix. Contrarily, the alternative treatment was shown to not produce cross-contamination to the chicken broth due to its high effectivity for biofilm control (<0.50% of transference) except for CECT 935 strain that had a different behavior. Therefore, changing to more intense cleaning treatments in the processing environments can reduce risk of cross-contamination.