Non-Alcoholic Fatty Liver Disease (NAFLD) begins with hepatic lipid accumulation, and leptin has antisteatosis properties. In this study, we investigated the effects of leptin on hepatic steatosis and inflammation through the vagal pathway independently of the inhibitory effect of food intake. Male Sprague-Dawley rats were matched for food intake after the high-fat diet (HFD)-induced obesity model and were injected intraperitoneally with leptin or leptin + lidocaine for 6 weeks. Control rats received equal volumes of saline. Adipose tissue mass, NAFLD activity scores (NAS), hepatic inflammatory factors, hepatic triglyceride content and hepatic lipid metabolism-related protein levels were evaluated. Leptin ameliorated HFD-induced hepatic lipid accumulation, improved NAS, and decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) levels in the presence of matched intake. Lidocaine decreased the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) expression in the nucleus tractus solitarius (NTS) and abrogated the leptin-mediated improvement. Leptin increased hypothalamic phosphorylated Janus kinase 2 (p-JAK2) and p-STAT3 expression, as well as the expression of mitochondrial respiratory chain-related genes. Leptin also increased hepatic phosphorylated adenosine 5′-monophosphate-activated protein kinase (p-AMPK) expression and phosphorylation of its downstream target acetyl Co A carboxylase 1 (ACC1), reducing de novo lipogenesis. Our results suggest that leptin ameliorated hepatic lipid accumulation and inflammation by activating the JAK2-STAT3/AMPK pathway through the vagal pathway independently of the inhibitory effect of ingestion. Leptin has the potential to be a drug for early NAFLD treatment.
Read full abstract