The Japanese pine sawyer beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae) is currently the most destructive forest pest as it transmits the pine wilt nematode Bursaphelenchus xylophilus. Morphological, optical features and dark/light adaptational changes of the compound eyes of M. alternatus adults were examined by light, scanning and transmission electron microscopy. The eye of M. alternatus is apposition type and contains 489–712 ommatidia, depending on the beetle’s body size. Each ommatidium features a large corneal lens, composed of a thick inner lens (ILU) and a thin outer lens unit (OLU); an acone-type of cone of four cone cells, a semi-fused type of rhabdom formed by eight retinular cells (two central cells: R7-R8 surrounded by six peripheral cells: R1-R6). Dark/light adaptational changes affect size and shape of the cones as well as the rhabdom’s cross-sectional area and outline, to optimize the amount of light that reaches the photopigment. The compound eyes of M. alternatus have an F-number of 0.94, an interommatidial angle of 5.34°, an eye parameter P of 4.98 μm rad and a ratio of acceptance to interommatidial angle of 0.45. The eye is characterized by relatively poor spatial resolution, but can be expected to exhibit high absolute sensitivity and contrast in dim light.