Mitoviruses, which are considered evolutionary relics of extinct alpha-proteobacteria RNA phages, represent one of the simplest self-replicating biological systems. This study aims to quantitatively describe genomes and identify potential genomic signatures that support the protein phylogenetic-based classification criterion. Genomic variables, such as mononucleotide and dinucleotide composition, codon usage bias, and minimal free energy derived from optimized predicted RNA secondary structure, were analyzed. From the values obtained, the main evolutionary pressures were discussed, indicating that natural selection plays a significant role in shaping mitovirus genomes. However, neutral evolution also makes a significant contribution. This study reveals a significant discovery of structural divergence in Kvaramitovirus. The energy minimization approach employed to study 2D folding in this study reveals a distinct spatial organization of their genomes, providing evidence for the hypothesis of a single evolutionary event of circularization in the most recent common ancestor of the lineage. This hypothesis was discussed in light of recent discoveries by other researchers that partially support the existence of mitoviruses with circular genomes. Finally, this study represents a significant advancement in the understanding of mitoviruses, as it quantitatively describes the nucleotide sequence at the family and genus taxonomic levels. Additionally, we provide hypotheses that can be experimentally validated to inspire new research and address the gaps in knowledge of this fascinating, basally divergent RNA virus lineage.
Read full abstract