Abstract

We describe a new computer program that identifies conserved secondary structures in aligned nucleotide sequences of related single-stranded RNAs. The program employs a series of hash tables to identify and sort common base paired helices that are located in identical positions in more than one sequence. The program gives information on the total number of base paired helices that are conserved between related sequences and provides detailed information about common helices that have a minimum of one or more compensating base changes. The program is useful in the analysis of large biological sequences. We have used it to examine the number and type of complementary segments (potential base paired helices) that can be found in common among related random sequences similar in base composition to 16S rRNA from Escherichia coli. Two types of random sequences were analyzed. One set consisted of sequences that were independent but they had the same mononucleotide composition as the 16S rRNA. The second set contained sequences that were 80% similar to one another. Different results were obtained in the analysis of these two types of random sequences. When 5 sequences that were 80% similar to one another were analyzed, significant numbers of potential helices with two or more independent base changes were observed. When 5 independent sequences were analyzed, no potential helices were found in common. The results of the analyses with random sequences were compared with the number and type of helices found in the phylogenetic model of the secondary structure of 16S ribosomal RNA. Many more helices are conserved among the ribosomal sequences than are found in common among similar random sequences. In addition, conserved helices in the 16S rRNAs are, on the average, longer than the complementary segments that are found in comparable random sequences. The significance of these results and their application in the analysis of long non-ribosomal nucleotide sequences is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.