Smart agriculture refers to the application of advanced technologies in the field of agriculture, such as the Internet of Things, big data, edge/cloud computing, among others. These technologies facilitate the monitoring, tracking, recording, visualization, automation, and analysis of various agricultural operations. One critical process in this domain is composting, an organic waste disposal method that enriches soil with nutrients and encourages sustainable farming practices. However, it requires constant monitoring to ensure high-quality compost production at an optimal rate, without the development of harmful toxins. In this context, we propose a novel IoT-based agricultural compost monitoring system. The system is composed of an IoT sensor probe, edge/cloud platforms, and integrated solutions for networking, monitoring, logging, reporting, and visualization. This paper provides a comprehensive physical implementation of the probe, including detailed prototype components, testing of pertinent sensor technologies, and analysis of experiments conducted on a compost site using several probe variants. The main contributions of this paper are twofold: (1) the development of a novel IoT system prototype for efficient compost monitoring, and (2) the identification of the optimal sensor technology for measuring compost temperature. Our findings indicate that infrared sensing technology delivers the fastest and most accurate readings.
Read full abstract