Accurately monitoring soil moisture content (SMC) in the field is crucial for achieving precision irrigation management. Currently, the development of UAV platforms provides a cost-effective method for large-scale SMC monitoring. This study investigates silage corn by employing UAV remote sensing technology to obtain multispectral imagery during the seedling, jointing, and tasseling stages. Field experimental data were integrated, and supervised classification was used to remove soil background and image shadows. Canopy reflectance was extracted using masking techniques, while Pearson correlation analysis was conducted to assess the linear relationship strength between spectral indices and SMC. Subsequently, convolutional neural networks (CNNs), back-propagation neural networks (BPNNs), and partial least squares regression (PLSR) models were constructed to evaluate the applicability of these models in monitoring SMC before and after removing the soil background and image shadows. The results indicated that: (1) After removing the soil background and image shadows, the inversion accuracy of SMC for CNN, BPNN, and PLSR models improved at all growth stages. (2) Among the different inversion models, the accuracy from high to low was CNN, PLSR, BPNN. (3) From the perspective of different growth stages, the inversion accuracy from high to low was seedling stage, tasseling stage, jointing stage. The findings provide theoretical and technical support for UAV multispectral remote sensing inversion of SMC in silage corn root zones and offer validation for large-scale soil moisture monitoring using remote sensing.
Read full abstract