In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized convex functions by combining the concepts of weak strictly pseudoinvex, strong pseudoinvex, weak quasi invex, weak pseudoinvex and strong quasi invex functions in Aghezzaf and Hachimi [Numer. Funct. Anal. Optim. 22 (2001) 775], d-invex functions in Antczak [Europ. J. Oper. Res. 137 (2002) 28] and univex functions in Bector et al. [Univex functions and univex nonlinear programming, Proc. Admin. Sci. Assoc. Canada, 1992, p. 115]. By utilizing the new concepts, we derive a Karush–Kuhn–Tucker sufficient optimality condition and establish Mond–Weir type and general Mond–Weir type duality results for the nondifferentiable multiobjective programming problem.
Read full abstract