Abstract The influence of wind stress, wind drift, and wind-wave (microscale) breaking on the coupled air–sea boundary layer is poorly understood. We performed high-resolution planar and stereo velocity measurements within the first micrometers to centimeters above and below surface gravity waves at the University of Miami’s SUSTAIN air–sea interaction facility. A particle image velocimetry (PIV) system was adapted and installed in the large (18 m long, 6 m wide) wind-wave tunnel at a fetch of approximately 10 m. In addition, wave field properties were captured by laser-induced fluorescence (LIF). Experiments were conducted with wind waves and wind over mechanically generated swell. In this work, we focus on rather smooth, young, wind-generated waves. We present instantaneous velocity and vorticity fields above and below the air–water interface for the same wind-wave conditions. Both instantaneous and phase-averaged fields show strong along-wave modulations in viscous stress. For steeper waves, we observe airflow separation and increased negative turbulent stress below crests, accompanied by sporadic drops in viscous stress below zero. We describe the wave-induced modulations of the airflow structure as well as the wind-induced water dynamics and discuss the importance of the viscous stress for the total momentum budget. Graphic abstract
Read full abstract