AbstractA succession of MCSs developed during the last week of October 2016 and produced extreme heavy rainfall in central China. The event underwent an evident shift from a mei-yu-like warm scenario to an autumn cold scenario. Diurnal cycles of rainfall and low-level winds may be modulated by the shifting of large-scale atmospheric conditions. We conducted observational analyses and numerical experiments to examine how large-scale circulations influenced rainfall systems through diurnally varying processes. The results show that, in the first half (warm) period of the event, intense rainfall mostly occurred in eastern-central China with an early morning peak. It was closely related to a nocturnal southwesterly low-level jet (NLLJ) on the flank of the western Pacific subtropical high. The NLLJ formed near midnight in southern China where ageostrophic wind rotated clockwise due to Blackadar’s inertial oscillation. The NLLJ extended downstream to central China during the predawn hours due to the horizontal advection of momentum. Both the formation and extension of the NLLJ were supported by an enhanced subtropical high that provided relatively warm conditions with surface heating for boundary layer inertial oscillation and strong background southwesterly winds for momentum transport. The NLLJ induced MCSs at its northern terminus where the low-level ascent, moisture flux convergence, and convective instability were enhanced during the predawn hours. In the second half period with an intrusion of cold air, the diurnal amplitude of low-level winds became small under relatively cold and cloudy conditions. Moderate rainfall tended to occur in western-central China with a peak after midnight, most likely due to frontogenetic processes, upslope lifting, and nighttime cloud-top cooling.
Read full abstract