The natural microdefects of shale and the expansion of microcracks under hydration and overlying rock loadings are important for the wellbore stability. According to the conservation of energy, the force of the microdefects and microcracks under finite deformation is studied by the method of configuration force through the migrating control volume in the spatial observer. Under the hydration stress and rock pressure, the equation of hydration stress and its work in reference configuration has been obtained, and the equations of configuration forces and configuration moment have been established as a consequence of invariance under changes. The relationship between the configuration and deformation forces is determined by the second law. The energy dissipation equation of the crack tip has been deduced, which shows that the projection of the concentrated internal configuration body force at the crack tip in the opposite direction of the crack is equal to the energy dissipation of the crack tip per unit length. The inertial and internal parts of the concentrated configuration body force at the crack tip have been derived; it is indicated that the internal configuration force plays a leading role in the irreversible fracture process. Moreover, the energy release rate of shale under hydration is proved to depend on constitutive responses and hydration stress. In the theoretical system of configuration force, the migrating control volume at the crack tip contains inclusions, microcracks, microvoids, and heterogeneity of the rock itself. We use the configuration force theory to solve the problem of rock crack propagation and rock fracture. The factors considered are more comprehensive, which can better reflect the actual situation and provide a theoretical basis for the study of wellbore stability.