Molten corium is considered to form in a severe accident at the Fukushima Daiichi Nuclear Power Station (FDNPS). Investigation of the primary containment vessel (PCV) inside the FDNPS showed that a significant amount of the molten corium reached the bottom of the pedestal region. The molten corium and concrete likely caused a complex interaction called Molten Corium Concrete Interaction (MCCI). Then, ex-vessel debris was formed after the solidification of the MCCI products and accumulated in the pedestal region. The solidification hysteresis of ex-vessel debris significantly influences its properties. We performed a thermodynamic analysis using the TAF-ID database to infer the solidification path of U–Zr–Al–Ca–Si–O molten corium, which was chosen for a prototypic system of ex-vessel debris. The solidification path for the CaO-rich sim-corium showed the following sequence: (i) melting as a single liquid phase at temperatures higher than 2430 K, (ii) selective solidification of the oxide-rich corium mainly consisted of fuel materials, and (iii) solidification of the remaining materials as a silicate matrix. In contrast, the solidification path for the SiO2-rich corium indicated that (i) formation of liquid miscibility gap above 2200 K between U-rich and Zr-rich oxidic melts, (ii) individual precipitation of solid phases in each liquid phase. Identified features of these solidification paths were in good agreement with the experimental data for the solidified sim-corium.
Read full abstract