Abstract Effects of minor alloying elements (Si, Mn, and Al) on the corrosion resistance behaviors of stainless steel (SS) modified 310S used as a cathode current collector (CCC) material for molten carbonate fuel cells (MCFC) were examined in a mixture of 62 mol% Li2CO3–38 mol% K2CO3 at 650 °C by measuring the change in corrosion potential and the potentio-dynamic, potentio-static polarization responses. The corrosion potential of modified 310S gradually increased after 9 h of immersion due to an active to passive transition and that of SSs added with minor alloying elements drastically increased before 6 h of immersion due to the reactive alloys. Si, Mn, and Al addition to base SS led to a decrease in corrosion resistance due to the rapid corrosion rate at the cathode operation potential, −40 mV, of the MCFC. The steady state current densities of SSs added with minor alloying elements were higher than that of 310S and modified 310S. Addition of Si, Mn, and Al induced a decrease in corrosion resistance of CCC materials in molten carbonate fuel cell operating temperatures, 650 °C.