Abstract

A novel hybrid system consisting of a molten carbonate fuel cell (MCFC), a gas turbine (GT), a steam cycle and a thermophotovoltaic (TPV) system to generate power is introduced and investigated. For this purpose, a GT is coupled to a MCFC in order to utilize unused fuel, raise the gas components temperature, supply the required carbon dioxide, and further power generation. Moreover, in order to boost the power generation and ameliorate the overall efficiency, a TPV system together with a steam cycle has been added to the system for heat recovery from the combustion chamber radiation and cathode output stream, respectively. The simulation of the hybrid system was accomplished through ASPEN HYSYS and MATLAB software. The effect of different influential parameters on each sub-system as well as the proposed hybrid system was examined comprehensively through sensitivity analysis. The results obtained revealed that increasing MCFC temperature decreased the anode, cathode, and ohmic overpotentials, while augmented the output voltage of the MCFC led to enhanced MCFC performance. Furthermore, the output voltage, power density, and efficiency of the MCFC enhanced with increasing the operating pressure for both of the fuel consumption rates. The output voltage and power density of the MCFC decreased as the fuel consumption rate incremented due to increased polarization losses, while the electrical efficiency of the MCFC enhanced. Optimizing the output temperature of the first and second heat exchangers increased the power of the steam turbine by about 16 kW. The highest power density and performance of the TPV system was obtained at cell and emitter distance of 1 cm. Incorporating the GT to the MCFC enhanced the system’s efficiency to 54.83%. The efficiency of the proposed hybrid system was found to be 67.3%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call