The principle of corresponding states has been applied to the thermal-conductivity data for molten alkali halides which have been obtained by recent forced Rayleigh scattering measurements. The theory, which was developed by Harada et al. for the transport properties of uni-univalent molten salts, is based on the fluctuation-dissipation theorem with the pair interaction between ions composed of core repulsive and Coulombic potentials. Four characteristic parameters specific to each salt have been used to reduce the thermal conductivity and temperature. It has been found that the thermal conductivity of molten alkali halides is adequately correlated by the corresponding-states correlation (λ* ∝ 1/T*) within experimental accuracy. By employing the correlation, the thermal conductivity of molten alkali fluorides, which could not be measured by the forced Rayleigh scattering method, is predicted.
Read full abstract