ObjectivesTo investigate the expression and possible role of soluble costimulatory molecules in the treatment of refractory myasthenia gravis. MethodsThirty-two patients with refractory myasthenia gravis were enrolled into this study and given tacrolimus 3 mg/day. At the beginning of treatment and 12 months follow-up period, clinical data were collected and recorded. The clinical classification of myasthenia gravis Foundation (MGFA) was performed. The MGFA-quantitative myasthenia gravis score (MGFA-QMGS), manual muscle test (MMT), MG activity of daily living (MG-ADL) and the activity of daily living (MG-ADL), the 15-item myasthenia gravis quality of life (MG QOL-15) and the dose change of prednisone were used to evaluate the efficacy. The expression levels of soluble costimulatory molecules and their ligands (sPD-1/sPD-L1, sICOS/sICOSL, sCD40/sCD40L), soluble CD25 and IL-2 in serum were determined by enzyme-linked immunosorbent assay (ELISA). ResultsWe observed that oral administration of 3 mg tacrolimus daily for 1 year can significantly improve the clinical symptoms of patients with refractory myasthenia gravis, which is characterized by a significant reduction in clinical scores, such as QMG, MMT, ADL, MGQOL-15, and a reduction daily oral prednisolone (PSL) dose (P < 0.0001).We also found that the levels of plasma sPD-1, sCD40, IL-2 in refractory MG patients increased significantly, and those decreased significantly 12 months after tacrolimus treatment (P < 0.05). The level of sCD25 was negatively correlated with clinical severity scores (P < 0.05). After tacrolimus treatment, the level of sPD-L1 increased although there was no significant difference. ConclusionTacrolimus could relieve the symptoms of refractory MG and significantly decrease the levels of plasma sPD-1, sICOSL, sCD40, sCD25 and IL-2. Soluble costimulatory molecules might be potential biomarkers for MG and tacrolimus treatment.
Read full abstract