A two-dimensional copper-based metal-organic framework, [Cu(C23H14O6)(C10H8N2)2]·H2O·DMSO, 1, was synthesized using pamoic acid (C23H16O6) and 4,4'-bipyridine (C10H8N2) as an organic ligand and Cu(II) as a metal ion. Single-crystal structure X-ray diffraction studies of the as-synthesized compound showed a two- dimensional structure with free hydroxyl groups. Upon excitation at 370 nm, the aqueous dispersion of [Cu(C23H14O6)(C10H8N2)2]·H2O·DMSO, 1, showed emission centered at 525 nm resulting from the intraligand energy transfer. Fluorescence microscopic experiments using a human epithelioid cervix carcinoma HeLa cell line were carried out, clearly showing that our compound selectively stained the cellular nucleus. To utilize the porous nature of [Cu(C23H14O6)(C10H8N2)2]·H2O·DMSO, 1, its dye sorption behavior in aqueous solution was determined, and a high affinity for methylene blue (MB) dye was confirmed. Our synthesized compound sorbed 88% MB dye with an initial concentration of 32 mg L-1, and its sorption capacity for MB was found to be 29.79 mg g-1. The possible mechanism of the dye sorption behavior was discussed in terms of the size and charge of dye molecules with respect to molecular-level interactions between the framework and the dye molecules.
Read full abstract