The Niger Delta, Nigeria, is noted for crude oil exploration. Whereas there seems to be a handful of data on soil polycyclic aromatic hydrocarbon (PAH) levels in this area, there is a paucity of studies that have evaluated soil and vegetation PAHs simultaneously. The present study has addressed this information gap. Fresh Panicum maximum (Jacq) (guinea grass), Pennisetum purpureum Schumach (elephant grass), Zea mays (L.) (maize), and soil samples were collected in triplicate from Choba, Khana, Trans-Amadi, Eleme, Uyo, and Yenagoa. PAHs determination was carried out using GC-MS. The percentage composition of the molecular weight distribution of PAHs, the molecular ratio of selected PAHs for identification of possible sources, and the isomeric ratio and total index of soil were evaluated. Pennisetum purpureum Schumach (elephant grass) from Uyo has the highest (10.0 mg·kg-1) PAH while Panicum maximum (Jacq) (guinea grass) has the highest PAH (32.5 mg·kg-1 from Khana. Zea mays (L.) (maize) from Uyo (46.04%), Pennisetum purpureum Schumach (elephant grass) from Trans-Amadi (47.7%), guinea grass from Eleme (49.2%), and elephant grass from Choba (39.9%) contained the highest percentage of high molecular weight (HMW) PAHs. Soil samples from Yenagoa (53.5%) and Khana (55.3%) showed the highest percentage of HMW PAHs. The total index ranged 0.27-12.4 in Uyo, 0.29-8.69 in Choba, 0.02-10.1 in Khana, 0.01-5.53 in Yenagoa, 0.21-9.52 in Eleme, and 0.13-8.96 in Trans-Amadi. The presence of HMW PAHs and molecular diagnostic ratios suggest PAH pollution from pyrogenic and petrogenic sources. Some soils in the Niger Delta show RQ(NCs) values higher than 800 and require remediation to forestall ecohealth consequences.