Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers anon-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as anoninvasive and efficient method for identifying high-risk molecular markers in gliomas, arecent focus of research. This review presents acomprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.