A molecular-imprinted polymer (MIP) gel with high effective recognition of amphenicol antibiotics was synthesized for the first time based on layered double hydroxide (LDH) as the support and initiator, and functionalized β-cyclodextrin (β-CD) as the functional monomer. The synergistic effect of molecular imprinting recognition and β-CD host-guest affinity enabled MIP gel to exhibit excellent selectivity (imprinted factors: 3.9–9.4) and high adsorption capacity (28.9–75.4 mg g−1) for amphenicol antibiotics. Different adsorption isotherms and kinetics models were followed, suggesting heterogeneous single-layer recognition and chemical adsorption. After 5 cycles of adsorption and desorption, the adsorption capacity of MIP gel retained above 83.6 %, demonstrating favorable reproducibility and stability. Under optimal conditions, the method validation showed a satisfactory limit of detection (5–10 μg L−1), good correlation (r2 > 0.9967), and respectable recovery (82.6–105.3 %). The MIP gel was applied to extract amphenicol antibiotics from food matrices, achieving recoveries in the range of 78.3–104.5 %. Importantly, the recognition mechanism was studied in detail using density functional theory. Therefore, the established method demonstrates high sensitivity and can be applied as a new tactic for detecting amphenicol antibiotics in food matrices.
Read full abstract