Three conjugated copolymers, PDPP-2FTVT, PIID-2FTVT, and PNDI-2FTVT based on the 2,2′-(1E)-1,2-ethenediylbis[3-fluorothiophene] (2FTVT) core with varying acceptor units, diketopyrrolopyrrole (DPP), isoindigo (IID), and naphthalenediimide (NDI) were developed for organic field-effect transistors (OFETs). Combined electron-withdrawing fluorine atoms and vinyl linkage in the 2FTVT unit not only reduce the frontier molecular orbital energies but also extended the absorption profile and planarize the polymer backbone, manifesting synergetic effect on the strengthened molecular interactions and charge-carrier properties. The resulted copolymer, PDPP-2FTVT show highly reliable thin film transistor properties with highest hole mobility of 1.93 cm2 V−1 s−1 compared to PIID-2FTV and PNDI-2FTVT. PIID-2FTV copolymer show ambipolar characteristic with hole and electron mobilities of 0.71 and 0.03 cm2 V−1 s−1 respectively while PNDI-2FTVT exhibited the highest electron mobility of 0.20 cm2 V−1 s−1 among three copolymers. Thin film micro-structure characterization reveal that the three copolymers formed lamellar, edge-on molecular packing (for PDPP-2FTVT and PIID-2FTV), increased crystallinity with smaller π-π stacking distances, and strengthen the planarity after thermal annealing. These results contribute important progresses in solution-processed OFET and could provide a greater possibility of 2FTVT based copolymers for commercial application.
Read full abstract