The systematic features of laser-induced desorption from an SnO2 surface exposed to 10-ns pulsed neodymium laser radiation are studied at the photon energy 2.34 eV, in the range of pulse energy densities 1 to 50 mJ/cm2. As the threshold pulse energy 28 mJ/cm2 is achieved, molecular oxygen O2 is detected in the desorption mass spectra from the SnO2 surface; as the threshold pulse energy 42 mJ/cm2 is reached, tin Sn, and SnO and (SnO)2 particle desorption is observed. The laser desorption mass spectra from the SnO2 surface coated with an organic copper phthalocyanine (CuPc) film 50 nm thick are measured. It is shown that laser irradiation causes the fragmentation of CuPc molecules and the desorption of molecular fragments in the laser pulse energy density range 6 to 10 mJ/cm2. Along with the desorption of molecular fragments, a weak desorption signal of the substrate components O2, Sn, SnO, and (SnO)2 is observed in the same energy range. Desorption energy thresholds of substrate atomic components from the organic film surface are approximately five times lower than thresholds of their desorption from the atomically clean SnO2 surface, which indicates the diffusion of atomic components of the SnO2 substrate to the bulk of the deposited organic film.
Read full abstract