Chronic diseases such as diabetes and cancer are the leading causes of mortality worldwide. Receptors for Advanced Glycation End products (RAGEs) are ubiquitous factors that catalyse Advanced Glycation End products (AGEs), proteins, and lipids that become glycated from sugar ingestion. RAGEs are cell surface receptor proteins and play a broad role in mediating the effects of AGEs on cells, contributing to modifying biological macromolecules like proteins and lipids, which can cause Reactive Oxygen Species (ROS) generation, inflammation, and cancer. We targeted RAGE inhibition analysis and screening of United States Food and Drug Administration (FDA) libraries through molecular docking studies that identified the four most suitable FDA compounds: Zytiga, Paliperidone, Targretin, and Irinotecan. We compared them with the control substrate, Carboxymethyllysine, which showed good binding interaction through hydrogen bonding, hydrophobic interactions, and π-stacking at active site residues of the target protein. Following a 100 ns simulation run, the docked complex revealed that the Root Mean Square Deviation (RMSD) values of two drugs, Irinotecan (1.3 ± 0.2 nm) and Paliperidone (1.2 ± 0.3 nm), were relatively stable. Subsequently, the Molecular Mechanics Poisson–Boltzmann Surface Area (MMPBSA) determined that the Paliperidone molecule had a high negative energy of −13.49 kcal/mol, and the Absorption, Distribution, Metabolism, and Excretion (ADME) properties were in control for use in the mentioned cases. We extended this with many in vitro studies, including an immunoblotting assay, which revealed that RAGEs with High Mobility Group Box 1 (HMGB1) showed higher expression, while RAGEs with Paliperidone showed lower expressions. Furthermore, cell proliferation assay and Apoptosis assay (Annexin-V/PI staining) results revealed that Paliperidone was an effective anti-glycation and anti-apoptotic drug—however, more extensive in vivo studies are needed before its use.
Read full abstract