A molecular linkage map of tomato was constructed based on a BC1 population (N = 145) of a cross between Lycopersicon esculentum Mill. line NC84173 (maternal and recurrent parent) and Lycopersicon hirsutum Humb. and Bonpl. accession PI126445. NC84173 is an advanced breeding line that is resistant to several tomato diseases, not including early blight (EB) and late blight (LB). PI126445 is a self-incompatible accession that is resistant to many tomato diseases, including EB and LB. The map included 142 restriction fragment length polymorphism (RFLP) markers and 29 resistance gene analogs (RGAs). RGA loci were identified by PCR amplification of genomic DNA from the BC1 population, using ten pairs of degenerate oligonucleotide primers designed based on conserved leucine-rich repeat (LRR), nucleotide binding site (NBS), and serine (threonine) protein kinase (PtoKin) domains of known resistance genes (R genes). The PCR-amplified DNAs were separated by denaturing polyacrylamide gel electrophoresis (PAGE), which allowed separation of heterogeneous products and identification and mapping of individual RGA loci. The map spanned 1469 cM of the 12 tomato chromosomes with an average marker distance of 8.6 cM. The RGA loci were mapped to 9 of the 12 tomato chromosomes. Locations of some RGAs coincided with locations of several known tomato R genes or quantitative resistance loci (QRLs), including Cf-1, Cf-4, Cf-9, Cf-ECP2, rx-1, and Cm1.1 (chromosome 1); Tm-1 (chromosome 2); Asc (chrromosme 3); Pto, Fen, and Prf (chromosome 5); 01-1, Mi, Ty-1, Cm6.1, Cf-2, CF-5, Bw-5, and Bw-1 (chromosome 6); I-1, 1-3, and Ph-1 (chromosome 7); Tm-2a and Fr1 (chromosome 9); and Lv (chromosome 12). These co-localizations indicate that the RGA loci were either linked to or part of the known R genes. Furthermore, similar to that for many R gene families, several RGA loci were found in clusters, suggesting their potential evolutionary relationship with R genes. Comparisons of the present map with other molecular linkage maps of tomato, including the high density L. esculentum x Lycopersicon pennellii map, indicated that the lengths of the maps and linear order of RFLP markers were in good agreement, though certain chromosomal regions were less consistent than others in terms of the frequency of recombination. The present map provides a basis for identification and mapping of genes and QTLs for disease resistance and other desirable traits in PI126445 and other L. hirsutum accessions, and will be useful for marker-assisted selection and map-based gene cloning in tomato.