Due to the limited effeteness and safety concerns associated with current cancer treatments, there is a pressing need to develop novel therapeutic agents. 4-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazolo[3,4-b]pyridine (3) was synthesized and Initially screened on 59 cancer cell lines showed promising anticancer activity, so, it was chosen for a 5-dose experiment by the NCI/USA. The GI50 values ranged from 1.04 to 8.02 μM on the entire nine panels (57 cell lines), with a GI50 of 2.70 μM for (MG-MID) panel, indicating an encouraging action. To further explore the molecular attributes of compound 3, we optimized its structure using DFT with the B3LYP/6-31 + + G(d,p) basis set. We have considered vibrational analysis, bond lengths and angles, FMOs, and MEP for the structure. Additionally, pharmacokinetic assessments were conducted using various in-silico platforms to evaluate the compound safety. A molecular modeling study created a kinase profile on 44 different kinases. This allowed us to study our compound's binding affinity to these kinases and compare it to the co-crystallized one. Our findings revealed compound 3 exhibited better binding for half of the tested kinases, suggesting its potential as a multi-kinase inhibitor. To further validate our computational results, we tested compound 3 for its inhibitory effects on CDK2 and PIM1. Compound 3 exhibited an IC50 of 0.30 µM for CDK2 inhibition, making it five times less active than Roscovitine, which has an IC50 of 0.06 µM. However, compound 3 demonstrated slightly better inhibition of PIM1 compared to Staurosporine. These findings suggest that compound 3 is a promising anticancer agent with the potential for further development into a highly active compound.