Abstract

Sunscreen molecules play a critical role in protecting skin from ultraviolet radiation, yet their efficient detection and separation pose challenges in environmental and analytical contexts. In this work, we employ a multilevel modeling approach to investigate the molecular interactions between representative sunscreen molecules and the polydimethylsiloxane (PDMS) polymer, a material widely recognized for its sorbent properties. Our goal is to explore how these interactions can be fine-tuned to facilitate the effective separation of sunscreen molecules in portable membrane inlet mass spectrometry (MIMS) systems, potentially leading to the development of new membrane materials. Using a combination of advanced computational techniques—force field molecular dynamics simulations, semiempirical GFN2-xTB, and density functional theory calculations—we assess the interaction strength and noncovalent interactions of sunscreen molecules, namely oxybenzone, naphthalene, benzo[a]anthracene, avobenzone, and 1,3,5-trichlorobenzene, with PDMS. Additionally, the effect of temperature on the interaction dynamics is evaluated, with the aim of extending the sorbent capacities of PDMS beyond light polar molecules to larger, polar sunscreen compounds. This study provides critical insights into the molecular-level interactions that may guide the design of novel membrane materials for efficient molecular separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.