The water retention capacity of porous materials is crucial in various geotechnical and environmental engineering applications such as slope stability analysis, landfill management, and mining operations. Filtered tailings stacks are considered an alternative to traditional tailings dams. Nevertheless, the mechanical behaviour and stability of the material under different water content conditions are of concern because these stacks can reach considerable heights. The water behaviour in these structures is poorly understood, particularly the effects of the water content on the stability and potential for liquefaction of the stacks. This study aims to investigate the water retention and flow characteristics of compacted iron ore tailings in high columns to better understand their hydromechanical behaviour. The research used 5 m high columns filled with iron ore tailings from the Quadrilátero Ferrífero region in Minas Gerais, Brazil. The columns were prepared in layers, compacted, and instrumented with moisture content sensors and suction sensors to monitor the water movement during various stages of saturation, drainage, infiltration, and evaporation. The sensors provided consistent data and revealed that the tailings exhibited high drainage capacity. The moisture content and suction profiles were effectively established over time and revealed the dynamic water retention behaviour. The comparison of the data with the theoretical soil water retention curve (SWRC) demonstrated a good correlation which indicates that there was no hysteresis in the material response. The study concludes that the column setup effectively captures the water retention and flow characteristics of compacted tailings and provides valuable insights for the hydromechanical analysis of filtered tailings stacks. These findings can significantly help improve numerical models, calibrate material parameters, and contribute to the safer and more efficient management of tailings storage facilities.