In this paper, the influence of various vacancy and Stone-Wales defects on the Young’s modulus of single-walled carbon nanotubes is investigated via a structural model. Dispersion in experimental results is the motivation for this work. Our results show that the type of method used (loading and boundary condition) for the prediction of the Young’s modulus of SWCNTs is very important for the results. The effect of different types of defects on the Young’s modulus is also studied for zigzag and armchair nanotubes with various aspect ratios (length/diameter). A comparison of our results with those of experimental methods indicates that for the exact prediction of the Young’s modulus of SWCNTs we need to apply the correct conditions.
Read full abstract