The rapid progress in polymer science has designed innovative materials for biomedical applications. In the case of drug design, for each new therapeutic agent, a drug delivery system (DDS) is required to improve its pharmacokinetic and pharmacodynamic parameters. Therefore, significant research has been carried out to develop drug delivery (DD) carriers for these new therapeutic agents. Hydrogels have been explored as potential candidates to prepare controlled drug delivery (CDD) systems to address the challenges related to the performance of the conventional DD formulations. Mucoadhesive drug delivery system (MUCO-DDS) is a specialized form of CDD system, facilitating site-specific DD, protecting the drug from first pass metabolism and enhancing its overall bioavailability. The present article provides a comprehensive discussion of the synthesis, properties and applications of polysaccharide-derived MUCO-DDS. Different natural polymer-derived MUCO-DDS including chitosan, alginate, pectin, xanthan gum, psyllium, gelatin, cellulose, hyaluronic acid, guar gum, sterculia gum and tragacanth gum have been reported. Herein, these DDS were elaborately discussed along with their applications and future-prospective. These DDS are classified on the basis of drug administration (nasal, ocular, vagina/rectal & buccal DDS) and drug distribution (reservoir and monolithic polymer matrix). Factors contributing to modifications of properties of MUCO-DDS were also demonstrated along with different stages and theories of mucoadhesion. Polysaccharides exhibit properties such as biocompatibility, biodegradability, and flexibility, making them ideal for CDD applications. MUCO-DDS demonstrates several significant advantages. Moreover, the article bridges theoretical insights with practical applications and future research prospects, ensuring its relevance for advancements in the concerned field. This review serves as a comprehensive resource, addressing gaps in previous literature and paving the way for innovations in MUCO-DDS, through a comparative analysis of the advantages, limitations, and modifications of natural polymers. In conclusion, this review gives an overview of the current developments in the field of mucoadhesive DD systems and also gives insights into the future perspectives. The MUCOAD of DDS could be modulated by the inclusion of various natural and synthetic components in hydrogels. Future directions for the researchers are underway to integrate nanotechnology with mucoadhesive systems to create hybrid platforms. Overall, by addressing current limitations and leveraging emerging technologies, these systems can revolutionize drug delivery for a wide range of therapeutic applications.
Read full abstract