Covert Channels are necessary to protect the privacy of individuals as well as to obtain confidentiality to governmental and military agencies. A novel covert timing channel is proposed with three main improvements over the existing ones: Reorder Density (RD) metric-based packet reordering that reduces exposure, introducing Modified Turbo Code (MTC) for efficient encoding, and Discrete Haar Wavelet Transform (DHWT) that increases channel reliability. A threat model is proposed and shown to be inefficient to effectively meet covert channel properties against network jitter, noise, and curious attackers that try to identify a channel exists. Run and test is applied to investigate randomness of the proposed covert channel. The proposed covert channel is adoptable to 5 G VoLTE networks. These proposed strategies significantly improve the robustness while also minimizing the detectability of covert channels in VoLTE.