In this paper, we propose a novel dual-reference adaptive feedforward controller to realize synchronous micropositioning and microvibration isolation on a magnetostrictive device. The scheme of the proposed adaptive feedforward controller and its differences from the traditional single-reference controller are briefly introduced. The desired trajectory and available external disturbance as two input references are utilized to develop the proposed controller. The dynamics compensator is constructed based on the modified filtered-x normalized least mean square (MFxNLMS) algorithm with the discrete cosine transform (DCT) technique. The asymmetric hysteresis compensator is modeled via the arctangent-polynomial modified Prandtl–Ishlinskii (APMPI) model. The experimental setup is built, and the closed-loop control experiment is carried out according to the designed experimental process. Comparison of experimental results show that the proposed dual-reference DCT-MFxNLMS controller behaves better than the single-reference DCT-MFxNLMS and proportional-derivative-derivative (PID) integrated controller for the synchronous micropositioning and vibration isolation cases. Moreover, by the dual-reference DCT-MFxNLMS controller, the vibration isolation ratio enhances and the tracking bandwidth increases within the interest of frequency bandwidth, compared with those of open-loop system, respectively.