The curing properties and adhesive strengths of the epoxidized natural rubber (ENR, 25 mole percent epoxidation) modified epoxy systems are studied with differential thermal calorimetry (DSC), scanning electron microscopy (SEM), and lap shear strength (LSS) measurement. The results of DSC analyses indicate that the curing exotherm, the curing rate, the reaction order, and the glass transition temperature of the epoxy system are affected by the presence of reactive ENR. From SEM micrographs, it is obtained that a second spherical rubber phase is formed during cure and the particle size of the rubber phase is increased by increasing the curing temperature and the ENR content. The changes of the volume fraction of the rubber phase and the Tg of the cured systems indicate that the mutual dissolution between epoxy resin and ENR happens and which changes with the curing temperature and the ENR content. The LSS of adhesive joints prepared with the ENR modified adhesives are all lower than those of the unmodified epoxy system, and decrease with increasing the amount of ENR added because of the limited compatibility of the ENR with the epoxy matrix.