Hydrophobic modification alters the properties of Pluronic F127 to form micelles more efficiently and enhances its drug-loading capacity. However, selecting the appropriate hydrophobic group for modification is laborious. In this paper, we propose an efficient approach for predicting key parameters to select hydrophobic groups for F127 modification prior to synthesis, in order to improve the formability and stability of the micelles. The results of nuclear magnetic resonance and isothermal titration calorimetry were utilized to establish a function for predicting the hydrophile–lipophile balance, critical micelle concentration, and Gibbs free energy of the products based on the structure of raw material. These predicted values can assist us in selecting suitable hydrophobic groups for F127 modification. Subsequently, we successfully tested our method and validated our work using pharmaceutical evaluation methods, such as appearance observation, particle size measurement, drug loading determination, equilibrium binding rate assessment, storage stability testing, and the plotting of accumulation release curves. Therefore, we suggest that our work could provide a model linking the molecular structure to properties, with the purpose of pre-selecting modification products that have advantages in micelle preparation. This can facilitate the application of F127 in preparing nano-micelles.
Read full abstract