The emissions of flue gas components (such as Hg0, SO2, HCl) and the generation of hazardous waste fly ash from municipal waste incineration pose a significant threat to environmental integrity. In this study, a mechanochemical method combined with a modifier is innovatively proposed for the modification of fly ash to remove Hg0. In the fixed bed adsorption experiment, the removal efficiency of up to 60 percent can be achieved by ball milling (700rap,30min) alone. The modification of fly ash by mechanical force coupling with pyrite can achieve Hg0 removal efficiency is increased to more than 90 percent. By taking advantage of the excellent adsorption capacity of modified fly ash for acidic gases, the enhancement of S and Cl∗ active sites on the surface of modified fly ash strengthened the removal efficiency of modified fly ash for Hg0. DFT simulations evidenced that the defective S sites caused by the ball milling process could enhance the adsorption capacity of pyrite for Hg0. The fly ash was modified with mechanically coupled pyrite and alkalis and was able to have good adsorption capacity for acidic gases, the highest removal effect reached 93.1% and 96.7% for SO2 and HCl, respectively. The adsorbed acid gases increased the S and Cl∗ active sites, which led to the removal of Hg0 from the modified fly ash to more than 94.4%, achieving the synergistic removal of acid gases and Hg0. This method can realize the integrated technical route of "Fly ash collection - Online modification - Timely injection". A novel investigation was conducted on the elimination of flue gas contaminants and the reutilization of perilous fly ash.
Read full abstract