Asphalt modified with treated waste tires has good environmental protection and application value. However, the nano-modification mechanism of crumb rubber (CR) with asphalt is still unclear. This research investigates the mechanism, aging, and interfacial interaction with the aggregate of CR modification asphalt (CRMA). The base asphalt and CRMA (original and aged) and two typical aggregate models were constructed. The accuracy of the model was verified through multiple indicators. The effects of CR and aging on the physical properties (density, compatibility, and diffusion coefficient), mechanical properties, component interaction behavior, and interfacial interactions with aggregates of CRMA were systematically analyzed. The results showed that the CR reduced the diffusion coefficient of asphalt by about 31%. The CR inhibited the movement of the components of asphalt (especially saturate and aromatic), which significantly improved the mechanical properties of asphalt. The compatibility between asphalt and CR significantly deteriorated after aging. The difference in the solubility parameter was about four times that before aging. It is instructive for the regeneration of CRMA. Aging led to a decrease in the shear modulus and Young's modulus of both base asphalt and CRMA, which verified and quantified the adverse effects of aging on the mechanical properties. Comparing the two aggregates, CaCO3 had a greater adhesion with asphalt than SiO2. The difference ranged from 22.5% to 39.9%, which quantified the difference in the adhesion properties of acid base aggregates with asphalt. This study can provide theoretical guidance for the modification and application of CRMA.
Read full abstract