The genetic diversity and structure of 17 populations of J. curcas, including 92 accessions from different provenances (tropical and subtropical), were investigated and effectively evaluated using twelve inter-simple sequence repeats (ISSRs) and seven pairs of florescence-amplified fragment-length polymorphism (AFLP) primers. Genetic diversity, at the overall level among populations of J. curcas based on the ISSR markers, showed that the observed number of alleles (Na) was 1.593, the effective number of alleles (Ne) was 1.330, Nei’s gene diversity (H) was 0.200, Shannon’s information index (I) was 0.303, and the percentage of polymorphic loci was 59.29%, indicating moderate genetic diversity between and within the different populations of J. curcas. Based on the genetic diversity analysis of AFLP markers, there were 1.464 (Na) and 1.216 (Ne) alleles, Nei’s gene diversity (H) was 0.132, Shannon’s information index (I) was 0.204, and the percentage of polymorphic loci was 46.40%. The AMOVA analysis showed that this large variance was due to differences within the populations, with genetic distinctions and limited gene flow among those from varied regions. The 17 populations were clustered into five main groups via UPGMA clustering analysis based on Nei’s genetic distance, and the genetic relationships among the populations exhibited no significant correlations with geographical provenances. The genetic variation among Chinese populations of J. curcas distributed in dry-hot valley areas was remarkable, and the American germplasm presented with distinct genetic differentiation.
Read full abstract