Seaweed foreign object detection has become crucial for food consumption and industrial use. This process not only can prevent potential health issues, but also maintain the overall marketability of seaweed production in the food industry. Traditional methods of inspecting seaweed foreign objects heavily rely on human judgment, which deals with large volumes with diverse impurities and can be inconsistent and inefficient. An automation system for real-time seaweed foreign object detection in the inspection process should be adopted. However, automated seaweed foreign object detection has several challenges due to its dependency on visual input inspection, such as an uneven surface and undistinguishable impurities. In fact, limited access to advanced technologies and high-cost equipment would also influence visual input acquisition, thereby hindering the advancement of seaweed foreign object detection in this field. Therefore, we introduce a computer vision model utilizing a deep learning-based algorithm to detect seaweed impurities and classify the samples into ‘clean’ and ‘unclean’ categories. In this study, we managed to identify six types of seaweed impurities including sand sticks, shells, discolored seaweed, grass, worm shells, and mixed impurities. We collected 1204 images and our model’s performance was thoroughly evaluated based on comparisons with three pre-trained models, i.e., Yolov8, ResNet, and MobileNet. Our experiment shows that Yolov8 outperforms the other two models with an accuracy of 98.86%. This study also included the development of an Android application to validate the deep learning engine to ensure its optimal performance. Based on our experiments, the mobile application managed to classify 50 pieces of seaweed samples within 0.2 s each, showcasing its potential use in large-scale production lines and factories. This research demonstrates the impact of Artificial Intelligence on food safety by offering a scalable and efficient solution that can be deployed in other food production processes facing similar challenges. Our approach paves the way for broader industry adoption and advancements in automated foreign object detection systems by optimizing detection accuracy and speed.
Read full abstract