The purpose of this paper is to discuss the effect of earthquake (EQ) preparation on changes in meteorological parameters. The two physical quantities of temperature (T)/relative humidity (Hum) and atmospheric chemical potential (ACP) have been investigated with the use of the Japanese meteorological “open” data of AMeDAS (Automated Meteorological Data Acquisition System), which is a very dense “ground-based” network of meteorological stations with higher temporal and spatial resolutions than the satellite remote sensing open data. In order to obtain a clearer identification of any seismogenic effect, we have used the AMeDAS station data at local midnight (LT = 01 h) and our initial target EQ was chosen to be the famous 1995 Kobe EQ of 17 January 1995 (M = 7.3). Initially, we performed conventional statistical analysis with confidence bounds and it was found that the Kobe station (very close to the EQ epicenter) exhibited conspicuous anomalies in both physical parameters on 10 January 1995, just one week before the EQ, exceeding m (mean) + 3σ (standard deviation) in T/Hum and well above m + 2σ in ACP within the short-term window of one month before and two weeks after an EQ. When looking at the whole period of over one year including the day of the EQ, in the case of T/Hum only we detected three additional extreme anomalies, except in winter, but with unknown origins. On the other hand, the anomalous peak on 10 January 1995 was the largest for ACP. Further, the spatial distributions of the anomaly intensity of the two quantities have been presented using about 40 stations to provide a further support to the close relationship of this peak with the EQ. The above statistical analysis has been compared with an analysis with recent machine/deep learning methods. We have utilized a combinational use of NARX (Nonlinear Autoregressive model with eXogenous inputs) and Long Short-Term Memory (LSTM) models, which was successful in objectively re-confirming the anomalies in both parameters on the same day prior to the EQ. The combination of these analysis results elucidates that the meteorological anomalies on 10 January 1995 are considered to be a notable precursor to the EQ. Finally, we suggest a joint examination of our two meteorological quantities for their potential use in real short-term EQ prediction, as well as in the future lithosphere–atmosphere–ionosphere coupling (LAIC) studies as the information from the bottom part of LAIC.
Read full abstract