Because of increase in threat from militant groups and during war exposure to blast wave from improvised explosive devices, Traumatic Brain Injury (TBI), a signature injury is on rise worldwide. During blast, the biological system is exposed to a sudden blast over pressure which is several times higher than the ambient pressure causing the damage in the brain. The severity of TBI due to air blast may vary from brief change in mental status or consciousness (termed as mild) to extended period of unconsciousness or memory loss after injuries (termed as severe). The blast wave induced impact on head propagates as shock wave with the broad spectrum of frequencies and stress concentrations in the brain. The primary blast TBI is directly induced by pressure differentials across the skull/fluid/soft tissue interfaces and is further reinforced by the reflected stress waves within the cranial cavity, leading to stress concentrations in certain regions of the brain. In this paper, an attempt has been made to study the behaviour of a human brain model subjected to blast wave based on finite element model using LSDYNA code. The parts of a typical human head such as skull, scalp, CSF, brain are modelled using finite element with properties assumed based on available literature. The model is subjected to blast from frontal lobe, occipital lobe, temporal lobe of the brain. The interaction of the blast wave with the head and subsequent transformation of various forms of shock energy internally have been demonstrated in the human head model. The brain internal pressure levels and the shear stress distribution in the various lobes of the brain such as frontal, parietal, temporal and occipital are determined and presented.
Read full abstract