This work deals with a chemotaxis model where an external source involving a sub and superquadratic growth effect contrasted by nonlocal dampening reaction influences the motion of a cell density attracted by a chemical signal. We study the mechanism of the two densities once their initial configurations are fixed in bounded impenetrable regions; in the specific, we establish that no gathering effect for the cells can appear in time provided that the dampening effect is strong enough. Mathematically, we are concerned with this problem ut=Δu-χ∇·(u∇v)+auα-buα∫ΩuβinΩ×(0,Tmax),τvt=Δv-v+uinΩ×(0,Tmax),uν=vν=0on∂Ω×(0,Tmax),u(x,0)=u0(x)≥0,v(x,0)=v0(x)≥0,x∈Ω¯,◊\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} u_t=\\Delta u-\\chi \ abla \\cdot (u\ abla v)+au^\\alpha -bu^\\alpha \\int _\\Omega u^\\beta &{}\ extrm{in}\\ \\Omega \ imes (0, T_{max}),\\\\ \ au v_t=\\Delta v-v+u &{}\ extrm{in}\\ \\Omega \ imes (0, T_{max}),\\\\ u_\ u =v_\ u =0 &{}\ extrm{on}\\ \\partial \\Omega \ imes (0, T_{max}),\\\\ u(x, 0)=u_0(x)\\ge 0, v(x,0)=v_0(x)\\ge 0, &{}x \\in {\\bar{\\Omega }}, \\end{array}\\right. } \\quad {\\Diamond } \\end{aligned}$$\\end{document}for τ=1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ au =1$$\\end{document}, n∈N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n\\in {\\mathbb {N}}$$\\end{document}, χ,a,b>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\chi ,a,b>0$$\\end{document} and α,β≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha , \\beta \\ge 1$$\\end{document}. Herein u stands for the population density, v for the chemical signal and Tmax\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_{max}$$\\end{document} for the maximal time of existence of any nonnegative classical solution (u, v) to system (◊\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Diamond $$\\end{document}). We prove that despite any large-mass initial data u0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u_0$$\\end{document}, whenever(The subquadratic case) 1≤α<2andβ>n+42-α,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1\\le \\alpha <2 \\quad \ ext {and} \\quad \\beta >\\frac{n+4}{2}-\\alpha ,$$\\end{document}(The superquadratic case) β>n2and2≤α<1+2βn,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta >\\frac{n}{2} \\quad \ ext {and} \\quad 2\\le \\alpha < 1+ \\frac{2\\beta }{n},$$\\end{document} actually Tmax=∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_{max}=\\infty $$\\end{document} and u and v are uniformly bounded. This paper is in line with the result in Bian et al. (Nonlinear Anal 176:178–191, 2018), where the same conclusion is established for the simplified parabolic-elliptic version of model (◊\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Diamond $$\\end{document}), corresponding to τ=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ au =0$$\\end{document}; more exactly, this work extends the study to the fully parabolic case Bian et al. (Nonlinear Anal 176:178–191, 2018).