Catalytic reactions running in an adsorbed overlayer on metallic alloy nanoparticles are of high interest in the context of applications in the chemical industry. The understanding of the corresponding kinetics is, however, still limited. One of the reasons of this state of the art is the interplay between adsorption and adsorbate-influenced segregation of metal atoms inside alloy nanoparticles. I scrutinize this interplay by using a generic field model of segregation and the mean-field approximation in order to describe adsorption, desorption, and elementary catalytic reactions. Under steady-state conditions, the segregation is demonstrated to be manifested in the change of the dependence of the activation energies of desorption or elementary reactions on coverage, and the sign of this change is positive. The effect of this change on the apparent reaction orders is briefly discussed as well.
Read full abstract