Abstract
The mixing and segregation of binary particles in a fluidized bed are typically characterized by inherent unpredictability. However, this phenomenon can be effectively regulated by applying vibrating airflow and the resonance effect generated therein. This study found that the application of the resonance effect leads to an increase in the voidage of fluidized beds, which is conducive to changing the state of particle dispersion. In addition, the variation in particle characteristics and proportions has a significant impact on the behavior of particles. If there is a substantial difference between particle characteristics and proportions, even with the application of pulsation frequency, it will not change the type of floating particles. Furthermore, phase diagrams and particle segregation models were successfully established for the pulsed fluidized bed, allowing for accurate prediction of binary particle segregation and mixing phenomena. This research provides a comprehensive theoretical foundation for regulating particle mixing and segregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.